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A method for the analysis of computer simulations of ultrafast dynamical processes

in many-body systems is presented, based on a joint time-frequency Wigner-Ville

distribution calculated from the evolving particle velocities. This quantity has the

interpretation of a time- and frequency- dependent effective temperature, and the

evolution of the distribution allows dynamical information about energy flow

between modes and relaxation mechanisms of many-body systems to be obtained.

This approach is illustrated for the example of vibrational relaxation of an 12

impurity in an argon cluster.
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Molecular dynamics simulation is an important theoretical approach to many

problems in chemical physics, ranging from detailed studies of few-body reaction

dynamics and intramolecular energy transfer [1] to the investigation equilibrium

and nonequilibrium statistical mechanics in condensed matter systems [2. A

simulation is essentially a numerical experiment, however, and considerable data

reduction of the often overwhelmingly detailed information generated by the

calculation must be done before insight can be extracted. This analysis relies on a

theoretical viewpoint to motivate the particular averaged quantities derived from

the dynamical variables. For many-body condensed phase systems at or near

equilibrium, statistical mechanics provides the appropriate formal foundation [3],

and the data reduction accompanying molecular dynamics simulations involves

calculating thermodynamic or statistical mechanical quantities, such as temperature,

pressure, density, pair correlation functions, time correlation functions, and

transport coefficients.

For few-body chemical dynamics in the gas phase, recent advances in

nonlinear science have inspired novel approaches to the analysis of classical

trajectory simulations, and have provided new insights into mechanisms of energy

transfer and origins of statistical or nonstatistical behavior [4,5]. Systems with a

small number of modes are now fairly well understood, although unsolved

problems remain for systems with as few as three degrees of freedom [5]. Much less

is known about dynamical processes in complex many-body systems and the nature

of nonstatistical and mode-specific energy transfer mechanisms in large polyatomic

molecules, van der Waals clusters, and condensed phases. The details of energy

transfer in these systems are being revealed modern ultrafast optical experiments [6],

stimulating the need for new theoretical approaches and insights.

In this brief report, we describe a method for the analysis of many-body

molecular dynamics simulations, based on a novel application of joint time-

2



frequency approaches previously employed in nonstationary signal processing [7].

The method is based on a generalization of correlation function methodology of

equilibrium statistical mechanics to the treatment of nonequilibrium and

nonstatistical processes of importance in ultrafast phenomena.

Equilibrium statistical mechanics conceptually replaces dynamics with

statistics, and thus views a complex many-body dynamical problem as a stochastic

process with statistics characterized by time correlation functions. Such quantities

can be related to spectroscopic and transport properties, and can often be measured

directly by experiments [2,31. An example is the velocity autocorrelation function of

a "tagged" particle in a many-body system, given by:

where the brackets indicate averaging over a statistical ensemble. For ergodic

systems at equilibrium, the ensemble average can be replaced by a time average

along a single trajectory:

T

C M)= lim_--I -(s ).6(t + s) ds
(2)

From the perspective of signal processing [7], the dynamics of a many-body system

can be thought of as a stationary random process; the statistics of the process do not

vary with time, thus allowing the time average to be computed.

Ultrafast dynamics in condensed phase systems driven by chemical reaction

or optical excitation differ fundamentally from equilibrium or linear response

regime processes. Initial conditions of extreme nonequilibrium nature are

generated, and the following femtosecond and picosecond time scale processes can
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exhibit nonstatistical, nondemocratic, and mode-specific energy relaxation pathways.

This behavior cannot be thought of as a stationary process, and indeed, the

particular sequences of events occuring in time and the underlying mechanisms

governing them are of central importance.

To generalize the idea of a correlation function to ultrafast dynamical

processes, nonstationary time series methods must be employed, and concepts such

as evolutionary spectra [7,8] and time-dependent frequencies [5] must be utilized.

Strictly, it is impossible to have complete knowledge of both the time dependence

and frequency dependence of a signal, as the time-frequency uncertainty principle

guarantees that these two types of information are incompatible. However, it is

possible to define joint time-frequency distributions which balance the lack of

certainty in a useful way. One example is the Wigner-Ville distribution [7,9]. This

quantity is well-known in quantum mechanics [91, where, with the replacement of

time and frequency by position and momentum, a phase space-like distribution,

known as the Wigner function, is obtained.

We define the function &(t,w), which plays the role of a time- and frequency-

dependent effective "temperature":

N
e(t, o) = - m i 1i(t,O))

i=1 , (3)

where mi is the mass of atom i, and ei(t,o) is given by,

OP(t, 0) f 6_.(t - /2) • 6,(t + r/2)e " d r. (4)



Under certain conditions, and after suitable averaging, this quantity can be related

directly to conventional quantities in statistical mechanics [3]. By integrating over

frequency, the instantaneous kinetic energy is obtained:

N
et , co ) d co Im V t = K M_ n

-- . (5)

Alternatively, for systems at equilibrium, an integration over time provides the

spectral density of the mass-averaged velocity autocorrelation function:

T Nlim-- e(t,o)dt =-1 m i0 v'')ei d
T - , i= (6)

Integrating over both frequency and time yields a quantity that is proportional to the

time-average kinetic energy, or temperature, of the system:

L 1T0 '+-

24 eJ(t, w) dt d w

N

= 2 M {(V. z2) + (V i2) + (V2i)}
i=1

3
= 3 N kT2 ,(7)

where k is Boltzmann's constant, T is the temperature, and N is the number of

particles.

The Wigner function 61(t,a) has the undesirable property of not being positive

definite, and can experience rapid oscillations as a function of time or frequency.

Similar behavior occurs for the quantum mechanical Wigner function. A more

useful quantity is the Husimi distribution [101, obtainable from the Wigner function
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by local gaussian smoothing. This function is always positive, and is simpler to

calculate in practice. In the example described below, we shall employ the Husimi

function fH(t,Oc), defined by:

1i,2 2

e.H (t ds dP.s.uI e , (8)

where a is a width parameter determining the relative smoothing windows in

frequency and time.

To illustrate the method, we consider a simple example: vibrational

relaxation of 12 in the van der Waals cluster 12-Ar 13111]. Our model consists of a

pairwise additive potential function, with the dynamics of 12 in its B electronic state

represented by a Morse oscillator [12] and I-Ar and Ar-Ar interactions given by 12-6

Lennard Jones potentials [2]. A minimum energy geometry of the cluster was

obtained by quenching a high energy trajectory, resulting in the 12 impurity

embedded in an incomplete solvation shell of argon atoms. The cluster was then

equilibrated to an energy corresponding to a time-averaged kinetic energy of 3 K. At

t = 0, the relative momentum of the I atoms was boosted to correspond to the v = 20

quantum state, and Hamilton's equations were integrated for 300 psec.

Figure 1 shows H(t,Wo) calculated for a trajectory of the 12-Ar 13 system. The

horizontal axis gives the frequency o in wavenumbers, while the vertical axis gives

both the value of eO(t,w) (in arbitrary units) and the time at which the spectrum is

calculated (in psec.) Time increases with increasing vertical shift of the spectra. The

Figure reveals a large peak centered at 100 cm -1 at the beginning of the simulation,

with very little intensity at frequencies below 50 cm -1. The large peak is due to the

vibrations of the 12 molecule. It is shifted from the harmonic value of 128 cm -1 by

the anharmonicity present at v = 20, which also results in a second small overtone
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appearing at 200 cm-1. The initial absence of low frequency intensity is due to the

lack of significant motion of the cold argon atoms. As time progresses, the spectrum

evolves: (1) the frequency of the 12 vibration increases with time, reaching about 120

cm- 1 by the end of the simulation, (2) the intensity of the high 12 frequency

decreases, and (3) the intensity for low frequencies increases with time. These effects

arise due to vibrational relaxation of the initially excited 12 molecule, with energy

flow into the low frequency interatomic degrees of freedom. The 12 frequency

increases with decreasing diatomic energy, due to the anharmonicity of the Morse

potential.

In Fig. 2, we investigate the dynamics of energy redistribution in the system

by defining two new temperature-like quantities, corresponding to low and high

frequency components of the motion:

Kim (t) = f e8H (t, o))do)2 r0 (9)

K high(t) = -- 'fe9 (t, o)) do)

W, (10)

We take wc = 75 cm-1, a frequency that divides argon cluster and 12 impurity

contributions to OH. These quantities measure the distribution of energy between

low and high frequency degrees of freedom. The solid curve labeled (a) shows the

time dependence of Khigh, while the long-dashed curve (b) gives K10". In addition,

we plot the sum Ktot = Khigh + Kjow as the short-dashed curve (c). Ktot is

equivalent to a short time average of the instantaneous kinetic energy with a

gaussian weighting function. The total is approximately constant with time, while

the decrease in Khigh and concomitant increase in Kiow indicates vibrational energy
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relaxation from the initially excited 12 into the cluster degrees of freedom. This

approach can be generalized to monitor the flow of energy between "modes" defined

in frequency space; this model-independent analysis of energy redistribution has

advantages in highly nonlinear systems such as this, where, except for the 12

vibrational degree of freedom, a good set of zeroth order modes are not known.

Insight into 12 vibrational energy relaxation and its effect on cluster structure

and dynamics can be gained from more detailed analysis of the time and frequency

dependence of Eq. (8). In Fig. 3 (a) shows the hyperspherical radius of the system,

defined as p = [ r12 + r22 + ... + r15 2 ]1/2, where ri is the distance of the ith particle from

the cluster center of mass. This quantity provides a useful diagnostic, allowing

structural changes of the system to be detected easily. Energy flow from the 12

impurity into the cluster induces isomerizations, with the promotion of argon

atoms from their minimum potential sites across activation barriers to regions of

higher potential energy. Similar behavior in pure rare gas clusters and other

systems has been interpreted as a finite system analogue of a solid-liquid phase

transition [13]. This behavior appears as sudden increases in the hyperspherical

radius of the system, such as at t = 50, 80, and 130 psec. in Fig. 3 (a). In Fig. 3 (b) we

show the corresponding time evolution of the zero frequency component of &H.

The structural changes in the system indicated by the time dependence of p(t)

correlate well with peaks in &H(t,wo=-O). These peaks are caused by transient aperiodic

motion, and occur when the system is in the process of undergoing a structural

change-in other words, when transition states are being traversed. For early times,

the cluster modes are still relatively cold, and the system migrates from one solid-

like configuration to another. This is reflected in the return of eH(t,w=-O) to nearly

zero, as seen for times less that 150 psec. As the argon degrees of freedom gain

energy, eH(t,wa=-O) experiences an overall increase with superimposed fluctuations.
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This correspoaius to the onset of diffusive motion in the now fluxional, or liquid,

cluster [13].

In summary, the nonstationary time series approach to the analysis of

molecular dynamics described here provides a powerful tool for reducing the wealth

of data generated by computer simulation into an understandable and physically

intuitive form. The gaussian smoothed time-frequency Wigner function9H (two),

which can be interpreted as a time- and frequency-dependent effective temperature,

provides a clear view of the dynamical processes occuring vibrational relaxation in a

model 12-Ar13 system. The approach provides a powerful tool for unraveling the

processes occuring in more complicated systems, such as large polyatomic

molecules, van der Waals clusters, polymers, and solids. Application to these

problems will be described elsewhere [141.
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Figure Captions

Figure 1 The time- and frequency- dependent distribution eH(t,o) for 12

relaxation in Ar13. Horizontal axis shows the frequency in

wavenumbers, while the vertical axis gives both the value of eH(t,wO)

and the time at which the spectra were calculated.

Figure 2 High frequency (a), low frequency (b), and total integral of eH(t,wo) over

frequency. See text for discussion.

Figure 3 (a) hyperspherical radius p(t) vs. time for 12-Ar13 duster. (b) zero

frequency component of fH(t,) . See text for details.
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